

Report of Test LLI-14272-13

OptoLum "EcoLine" Extruded Aluminum Luminaire. Cat No. EL-LP-S--358UOD-A072000

Low profile extruded housing with extents ~ 72.375" x 1.0" x 0.375".

Twelve white PCB sections marked "OptoLum EcoLine SLO R4.1" with five LEDs each on 1.187" centers.

Curved opal plastic lens. Luminous Opening ~ 72 x 0.5 x 0.0625".

One remote "High Perfection Tech LP1090-24-GG-290 100-240Vac 47-63Hz" driver.

Tested at 120V 60Hz with luminous opening horizontal facing nadir.

Performance Summary							
Total Light Output	982 lm	Min Power Factor	0.64 @ 277 V				
Luminaire Power	25.0 W	Max THD(i)*	29.7 % @ 277 V				
Luminous Efficacy	39.3 lm/W	SC along*, across*	1.26 , 1.28				
CCT	3340 K	SC Diagonal*	1.40				
CIE(x,y) 1931	(0.413, 0.391)						
CRI	85						
0-60° Zonal Flux %	76.0 %						

PREPARED FOR: OptoLum Inc., 1407 W 10th Place, Tempe, AZ

Page 1 of 10 ES

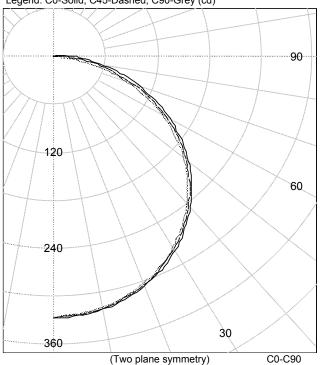
Test Report No. LLI-14272-13

OptoLum "EcoLine" Extruded Aluminum Luminaire. Cat No. EL-LP-S--358UOD-A072000 Low profile extruded housing with extents ~ 72.375" x 1.0" x 0.375". Twelve white PCB sections marked "OptoLum EcoLine SLO R4.1" with five LEDs each on 1.187" centers.

Curved opal plastic lens. Luminous Opening $\sim 72 \times 0.5 \times 0.0625$ ". One remote "High Perfection Tech LP1090-24-GG-290 100-240Vac 47-63Hz" driver.

Tested at 120V 60Hz with luminous opening horizontal facing nadir.

Page 2 of 10


Test Report No. LLI-14272-13

OptoLum "EcoLine" Extruded Aluminum Luminaire. Cat No. EL-LP-S--358UOD-A072000 Low profile extruded housing with extents ~ 72.375 " x 1.0" x 0.375".

Twelve white PCB sections marked "OptoLum EcoLine SLO R4.1" with five LEDs each on 1.187" centers. Curved opal plastic lens. Luminous Opening ~ 72 x 0.5 x 0.0625".

> One remote "High Perfection Tech LP1090-24-GG-290 100-240Vac 47-63Hz" driver. Tested at 120V 60Hz with luminous opening horizontal facing nadir.

Legend: C0-Solid, C45-Dashed, C90-Grey (cd)

INTENSITY SUMMARY (cd)

				`	,	
			C-Plane			Flux
Gamma	C0	C22.5	C45	C67.5	C90	(lm)
0.0	327	327	327	327	327	
5.0	326	325	325	326	324	31
10.0	322	321	321	322	319	
15.0	316	314	314	315	312	89
20.0	306	304	305	305	302	
25.0	295	293	292	293	290	135
30.0	281	279	278	278	276	
35.0	264	262	261	261	259	164
40.0	246	244	243	241	239	
45.0	225	224	222	220	218	171
50.0	204	202	199	197	195	
55.0	180	178	175	172	170	157
60.0	155	154	150	146	144	
65.0	129	128	123	119	116	122
70.0	104	102	96	91	88	
75.0	79	77	70	63	58	74
80.0	57	54	46	37	31	
85.0	37	34	26	16	10	29
90.0	23	20	13	4	0	
					· · · · · · · · · · · · · · · · · · ·	

ZONAL FLUX AND PERCENTAGES

Zone	Flux (lm)	% Lamp	% Luminaire
0-30	255	N/A	25.9
0-40	418	N/A	42.6
0-60	746	N / A	76.0
0-90	970	N / A	98.8
40-90	552	N/A	56.2
60-90	224	N/A	22.8
90-180	11	N / A	1.2
0-180	982	N / A	100.0

Total Light Output = 982 lm

E Southgate

Eric Southgate **Authorized Signatory** Date of test

12-Oct-2014

Date of report

15-Oct-2014

Page 3 of 10 ES

Test Report No. LLI-14272-13

OptoLum "EcoLine" Extruded Aluminum Luminaire. Cat No. EL-LP-S--358UOD-A072000 Low profile extruded housing with extents ~ 72.375 " x 1.0" x 0.375".

Twelve white PCB sections marked "OptoLum EcoLine SLO R4.1" with five LEDs each on 1.187" centers. Curved opal plastic lens. Luminous Opening ~ 72 x 0.5 x 0.0625".

One remote "High Perfection Tech LP1090-24-GG-290 100-240Vac 47-63Hz" driver. Tested at 120V 60Hz with luminous opening horizontal facing nadir.

Intensity data (cd)

		Int	ensity data (co	a)	
0	-		C-Plane		000
Gamma	C0	C22.5	C45	C67.5	C90
0.0	327	327	327	327	327
2.5	327	326	326	328	325
5.0	326	325	325	326	324
7.5	324	323	323	325	322
10.0	322	321	321	322	319
12.5	319	318	318	319	316
15.0	316	314	314	315	312
17.5	311	310	310	310	308
20.0	306	304	305	305	302
22.5	300	298	299	299	296
25.0	295	293	292	293	290
27.5	288	286	285	286	283
30.0	281	279	278	278	276
32.5	273	271	270	270	267
35.0	264	262	261	261	259
37.5	255	253	252	252	249
40.0	246	244	243	241	239
42.5	236	234	232	231	229
45.0	225	224	222	220	218
47.5	215	213	210	209	207
50.0	204	202	199	197	195
52.5	192	191	187	185	183
55.0	180	178	175	172	170
57.5	168	166	163	159	158
60.0	155	154	150	146	144
62.5	142	141	137	132	131
65.0	129	128	123	119	116
67.5	116	115	110	105	102
70.0	104	102	96	91	88
72.5	92	89	83	76	73
75.0	79	77	70	63	58
77.5	68	65	58	49	45
80.0	57	54	46	37	31
82.5	46	44	35	25	20
85.0	37	34	26	16	10
87.5	30	27	19	9	2
90.0		20	13	4	0

Page 4 of 10 $\,$ E \int

Test Report No. LLI-14272-13

OptoLum "EcoLine" Extruded Aluminum Luminaire. Cat No. EL-LP-S--358UOD-A072000 Low profile extruded housing with extents ~ 72.375" x 1.0" x 0.375".

Twelve white PCB sections marked "OptoLum EcoLine SLO R4.1" with five LEDs each on 1.187" centers. Curved opal plastic lens. Luminous Opening $\sim 72 \times 0.5 \times 0.0625$ ".

One remote "High Perfection Tech LP1090-24-GG-290 100-240Vac 47-63Hz" driver. Tested at 120V 60Hz with luminous opening horizontal facing nadir.

Intensity data (cd)	Inte	nsity	data	(cd)
---------------------	------	-------	------	------

		int	ensity data (co	a)	
Camma	CO	C22.5	C-Plane C45	CC7 F	C90
Gamma 90.0	23	20	13	C67.5	0
90.0 92.5	23 17	15	8	2	0
95.0	13	11	5	1	0
93.0 97.5	9	8	4	1	0
100.0	7	6	3	0	0
102.5	5	4	2	0	0
105.0	4	3	2	0	0
107.5	4	3	2 2	0	0
110.0	3	3	2	0	0
112.5	3	3	1	0	0
115.0	3	2	1	0	0
117.5	2	2	1	0	0
120.0	3	2	1	0	0
122.5	2	2	1	0	0
125.0	2	1	1	0	0
127.5	1	1	0	0	0
130.0	1	1	0	0	0
132.5	1	1	0	0	0
135.0	1	1	0	0	0
137.5	1	1	0	0	0
140.0	1	0	0	0	0
142.5	1	0	0	0	0
145.0	1	0	0	0	0
147.5	0	0	0	0	0
150.0	0	0	0	0	0
152.5	0	0	0	0	0
155.0	0	0	0	0	0
157.5	0	0	0	0	0
160.0	0	0	0	0	0
162.5	0	0	0	0	0
165.0	0	0	0	0	0
167.5	0	0	0	0	0
170.0	0	0	0	0	0
172.5	0	0	0	0	0
175.0	0	0	0	0	0
177.5	0	0	0	0	0
180.0	0	0	0	0	0

Page 5 of 10

Test Report No. LLI-14272-13

OptoLum "EcoLine" Extruded Aluminum Luminaire. Cat No. EL-LP-S--358UOD-A072000 Low profile extruded housing with extents ~ 72.375" x 1.0" x 0.375".

Twelve white PCB sections marked "OptoLum EcoLine SLO R4.1" with five LEDs each on 1.187" centers. Curved opal plastic lens. Luminous Opening ~ 72 x 0.5 x 0.0625".

One remote "High Perfection Tech LP1090-24-GG-290 100-240Vac 47-63Hz" driver. Tested at 120V 60Hz with luminous opening horizontal facing nadir.

Coefficients Of Utilization * - Zonal Cavity Method Effective Floor Cavity Reflectance 0.20

RC			80	80				70	70				50	50			30	30			10	10		0
RW	70	50	30	10	10	70	50	30	10	10	50	30	10	10	50	30	10	10	50	30	10	10	0	0
	0	119	119	119	119		116	116	116	116		110	110	110		105	105	105		101	101	101		99
	1	108	103	98	94		105	100	96	93		96	93	89		92	89	86		88	86	84		82
	2	98	89	82	76		95	87	81	75		83	78	73		80	75	71		77	73	70		67
	3	89	78	70	63		86	76	69	62		73	67	61		70	65	60		68	63	59		56
	4	81	69	60	53		79	68	59	53		65	58	52		63	56	51		60	55	50		48
	5	75	62	52	46		73	60	52	45		58	51	45		56	49	44		54	48	44		41
	6	69	55	46	40		67	54	46	40		52	45	39		51	44	39		49	43	38		36
	7	64	50	41	35		62	49	41	35		48	40	35		46	39	34		45	39	34		32
	8	59	46	37	31		58	45	37	31		44	36	31		42	35	31		41	35	30		28
	9	56	42	34	28		54	41	33	28		40	33	28		39	32	28		38	32	27		25
	10	52	39	31	25		51	38	30	25		37	30	25		36	30	25		35	29	25		23

Page 6 of 10 ES

Test Report No. LLI-14272-13

OptoLum "EcoLine" Extruded Aluminum Luminaire. Cat No. EL-LP-S--358UOD-A072000

Low profile extruded housing with extents ~ 72.375" x 1.0" x 0.375".

Twelve white PCB sections marked "OptoLum EcoLine SLO R4.1" with five LEDs each on 1.187" centers.

Curved opal plastic lens. Luminous Opening ~ 72 x 0.5 x 0.0625".

One remote "High Perfection Tech LP1090-24-GG-290 100-240Vac 47-63Hz" driver.

Tested at 120V 60Hz with luminous opening horizontal facing nadir.

LM-79 Performance Data

Spectral	CIE 1931 (x, y) (1)	(0.413, 0.391)
	CIE 1976 (u', v') (1)	(0.241, 0.512)
	Correlated Color Temperature (CCT) (1)	3340 K
	Color Spatial Uniformity (2)	0.0011
	Color Rendering Index (Ra) (1)	85
	Special CRI 9 (R ₉) (1),	(3) 27
	Distance from Planckian Locus (Duv) (1),	-0.0015
	Scotopic/Photopic Ratio (1),	(3) 1.49

Electrical	Voltage Frequency Current Power Power Factor Current THD	120 V 60 Hz 0.2196 A 25.01 W 0.949 9.35 %	(Setpoint 1)
	Voltage Frequency Current Power Power Factor Current THD	277 V 60 Hz 0.1664 A 29.55 W 0.641 29.71 %	(Setpoint 2)

Performance data in accordance with IESNA LM-79-08. Spectral calculations are for a CIE 2° observer Photometric and spectral values were measured at Setpoint 1

- (1) Value is computed from the weighted average of the spatial measurements
- (2) Value is the maximum deviation of the spatial u' and v' measurements from the weighted average
- (3) Quantity is in addition to the scope of IESNA LM-79-08

Page 7 of 10 ES

Test Report No. LLI-14272-13

OptoLum "EcoLine" Extruded Aluminum Luminaire. Cat No. EL-LP-S--358UOD-A072000 Low profile extruded housing with extents ~ 72.375" x 1.0" x 0.375".

Twelve white PCB sections marked "OptoLum EcoLine SLO R4.1" with five LEDs each on 1.187" centers. Curved opal plastic lens. Luminous Opening $\sim 72 \times 0.5 \times 0.0625$ ".

One remote "High Perfection Tech LP1090-24-GG-290 100-240Vac 47-63Hz" driver. Tested at 120V 60Hz with luminous opening horizontal facing nadir.

LM-79 Performance Data

ummary	Relative Spectra	l Irradiance D	Distribution (wa	velength - n	m, irradiance	- relative to p	eak = 1
380	0.00E+00	480	2.80E-01	580	9.37E-01	680	3.84E-
385	0.00E+00	485	2.61E-01	585	9.60E-01	685	3.43E-
390	0.00E+00	490	2.71E-01	590	9.80E-01	690	3.04E
395	0.00E+00	495	3.01E-01	595	9.93E-01	695	2.67E-
400		500	3.46E-01	600	9.99E-01	700	2.36E
405		505	3.96E-01	605	9.98E-01	705	2.06E
410		510	4.46E-01	610	9.87E-01	710	1.79E
415		515	4.93E-01	615	9.69E-01	715	1.55E
420		520	5.33E-01	620	9.46E-01	720	1.32E
425		525	5.71E-01	625	9.14E-01	725	1.14E
430		530	6.05E-01	630	8.77E-01	730	9.79E
435		535	6.37E-01	635	8.33E-01	735	8.32E
440		540	6.69E-01	640	7.89E-01	740	7.07E
445		545	7.01E-01	645	7.37E-01	745	5.90E
450		550	7.34E-01	650	6.86E-01	750	4.92E
455	8.16E-01	555	7.69E-01	655	6.33E-01	755	4.06E
460	7.18E-01	560	8.07E-01	660	5.82E-01	760	3.29E
465	5.39E-01	565	8.42E-01	665	5.29E-01	765	2.55E
470	4.31E-01	570	8.77E-01	670	4.76E-01	770	1.87E
475	3.45E-01	575	9.09E-01	675	4.31E-01	775	1.19E
						780	5.75E
1 -							
0.9							
0.8		^					
Ø 0.7 -							
0.6		\					
<u>a</u>		\					
ට්ට 0.5 ·		1 /					
ග් 0.4 ·							
Relative Spectral Power 0.5 0.6 0.5 0.4 0.3 0.3 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3							
0.2							
0.1							
0 -							Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, whic

Wavelength (nm)

* The spectral power distribution combines the weighted spectral power distributions of all spatial measurements.

Page 8 of 10 ES

Test Report No. LLI-14272-13

OptoLum "EcoLine" Extruded Aluminum Luminaire. Cat No. EL-LP-S--358UOD-A072000 Low profile extruded housing with extents ~ 72.375 " x 1.0" x 0.375".

Twelve white PCB sections marked "OptoLum EcoLine SLO R4.1" with five LEDs each on 1.187" centers. Curved opal plastic lens. Luminous Opening $\sim 72 \times 0.5 \times 0.0625$ ".

One remote "High Perfection Tech LP1090-24-GG-290 100-240Vac 47-63Hz" driver. Tested at 120V 60Hz with luminous opening horizontal facing nadir.

LM-79 Performance Data

Spatial measurements

Vertical	CIE 1976 (u',v') coordinates							
angle (deg)	Horizontal 0 plane	Horizontal 90 plane						
0	(0.240, 0.512)	(0.240, 0.512)						
10	(0.240, 0.512)	(0.240, 0.512)						
20	(0.240, 0.512)	(0.240, 0.512)						
30	(0.240, 0.512)	(0.241, 0.512)						
40	(0.241, 0.512)	(0.241, 0.512)						
50	(0.240, 0.512)	(0.241, 0.513)						
60	(0.241, 0.513)	(0.241, 0.513)						
70	(0.241, 0.513)	(0.240, 0.513)						
80	(0.241, 0.513)	I <= 10 %						
90	I <= 10 %	I <= 10 %						

Spatial measurements

Vertical	CIE 1976 (u',v') coordinates							
angle (deg)	Horizontal 0 plane	Horizontal 90 plane						
90	I <= 10 %	I <= 10 %						
-	-	-						
-	-	-						
-	-	-						
-	-	-						
-	-	-						
-	-	-						
-	-	-						
-	-	-						
-	=	-						

Test procedure

All measurements were performed in an environmentally controlled laboratory employing suitable baffling to minimize stray light. The sample was mounted in its normal operating orientation on a rotating mirror goniophotometer and operated from a stabilized supply. The photometric output was monitored and measurements were performed once stability was achieved.

The goniophotometer was used to measure the spatial distribution of both luminous intensity and, in conjunction with a spectroradiometer, spectral irradiance. The distribution locus comprises points in two or more planes (as indicated in the table above) at no more than 10° vertical intervals. The CIE (x,y) coordinates and other derived metrics (CIE (u', v'), CCT and CRI) are calculated from the weighted sum (weighted for intensity and represented solid angle) of the measured spectral irradiances.

Stabilization Time 1.25 hour Sample Orientation Horizontal **Total Operation Time** 16.25 hour

Equipment and uncertainties

CIF (x v) coordinates

Current THD *

LightLab International R80A C-gamma rotating mirror goniophotometer with a test distance of 8 m.

Luminous Intensity	± 4 %	Temperature	±1°C
Luminous Flux	± 4 %	Luminous Efficacy	± 4.5 %
Horizontal Vertical Angles	+ 0.25°		

CCT

Power Factor

PhotoResearch PR-670 spectroradiometer (380 - 780 nm., 2 nm. per pixel) measuring at a distance from the sample deemed greater than five times the maximum observed luminous opening dimension.

+0.003

0.2 (x, y) 000. aa.o	_ 0.000		
CIE (u', v') coordinates	± 0.002	CRI (Ra)	± 2
Δ (u', v') Color difference	± 0.001	Scotopic / Photopic Ratio *	± 0.02
Relative Spectral Irradiance *	± 2 %	R9 *	± 2
Yokogawa WT210 power meter connected in circuit to	o the sample electrical sup	pply	
Voltage	± 0.5 %	Frequency *	± 0.1 Hz
Current	± 0.5 %	Power	± 0.5 %

This report contains data that are not covered by the NVLAP accreditation. Quantities marked with * are not covered. IESNA LM-79-08 Calculator v4.9 (23rd Sep 2014)

Page 9 of 10 ES

+ 100 K

± 0.02

Ph: +61 7 3283 7862 Fx: +61 7 3283 8751 www.lightlab.com.au

Test Report No. LLI-14272-13

OptoLum "EcoLine" Extruded Aluminum Luminaire. Cat No. EL-LP-S--358UOD-A072000 Low profile extruded housing with extents ~ 72.375" x 1.0" x 0.375".

Twelve white PCB sections marked "OptoLum EcoLine SLO R4.1" with five LEDs each on 1.187" centers. Curved opal plastic lens. Luminous Opening $\sim 72 \times 0.5 \times 0.0625$ ".

One remote "High Perfection Tech LP1090-24-GG-290 100-240Vac 47-63Hz" driver. Tested at 120V 60Hz with luminous opening horizontal facing nadir.

Test Distance: 8.0 metres

Test Temperature: 24.7 degrees Celsius

Significance: The laboratory has not participated in the selection of samples to be tested. All testing

is performed on the understanding that the significance of the report is limited to the

extent that the test sample is representative of production units.

Test Procedure: Tested in accordance with the applicable sections of IESNA publication LM-79-08.

Notes: The luminous intensity values, and other derived quantities, contained in this report

are based on the absolute data, as measured.

Prorating the performance of the sample for the use of other component combinations (such as lamp / LED / Ballast / driver), or for use in different

environmental conditions than that tested, may produce erroneous results.

This report is free of erasures and corrections.

Photometric intensity values are reported using the CIE Gamma coordinate system

as defined in CIE publication number 121.

This report may contain data that are not covered by the NVLAP accreditation.

Quantities marked with * are not covered.

5-Oct-14 15:32:16 REPORT program version: 3.804a

Page 10 of 10 ES